Historic American Buildings Survey
Level II Report

LORSTA
NARROW CAPE
Kodiak Island, Alaska

Final
October 2011

Prepared by
Jacobs Engineering Group Inc.
4300 B Street, Suite 600
Anchorage, Alaska 99503
COPIES OF COLOR TRANSPARENCIES
WRITTEN HISTORICAL AND DESCRIPTIVE DATA
REDUCED COPIES OF MEASURED & INTERPRETIVE DRAWINGS

HISTORIC AMERICAN BUILDINGS SURVEY
National Park Service
U.S. Department of the Interior
240 West 5th Avenue, Suite 114
Anchorage, Alaska 99501
TABLE OF CONTENTS

I. HISTORICAL INFORMATION .. 2
 I.A. PHYSICAL HISTORY ... 2
 I.a.i. Date of Erection ... 2
 I.a.ii. Architect ... 2
 I.a.iii. Original and Subsequent Owners, Occupants, Uses .. 2
 I.a.iv. Builder, Contractor, Suppliers .. 2
 I.a.v. Original Plans and Construction ... 2
 I.a.vi. Alterations and Additions ... 2
 I.B. HISTORICAL CONTEXT ... 2
 I.b.i. LORAN-A to C .. 2
 I.b.ii. LORSTA Kodiak ... 4
 I.b.iii. State of LORAN .. 5
II. ARCHITECTURAL INFORMATION .. 6
 II.A. PHYSICAL HISTORY OF BUILDINGS .. 6
 II.a.i. Old Transmitter Building, 1976 .. 6
 II.a.ii. New Transmitter Building, ca. 2005 .. 6
 II.a.iii. 625’ Guyed Antenna, 1976 ... 6
III. SITE DESCRIPTION .. 7
IV. REFERENCE LIST .. 8
 IV.A. PRIMARY SOURCES .. 8
 IV.a.i. Interviews ... 8
 IV.a.ii. Other Primary Sources .. 8
 IV.B. SECONDARY SOURCES .. 9

ATTACHMENTS

Index to Photographs/National Register of Historic Places Color Transparencies
Alaska Building Inventory Forms
Architectural Drawings
HABS Release Form
Name: USCG LORAN-C Station Historic District, Kodiak (Narrow Cape), AK

Location: USCG LORSTA Kodiak
P O Box 190032, Kodiak, AK 99619

Present Owner: U.S. Fish and Wildlife Service, 605 West 4th Avenue, Rm G-61, Anchorage, AK 99501

Present Use: None

Significance
Long Range Aid to Navigation (LORAN) was a government-provided terrestrial navigation system established for military and civilian users throughout the United States, Canada, Europe, Asia, and Russia. Since its inception in 1940, LORAN provided marine, air, and land positions to users during World War II (WWII), through the Cold War, and into the twenty-first century. LORAN-C, a later version of the long-range navigation series, operated as a low frequency hyperbolic navigation system using the time difference in pulses from three or more transmitting stations to obtain a position. It was highly accurate, all-weather, and available twenty-four hours a day. In 2010, the United States and Canada both ceased operation of the system.

The LORAN-C station at Narrow Cape was established in 1976 by the United States Coast Guard (USCG). It is eligible as a historic district under Criterion A, at the national level of significance, for its role as an historic aid to navigation representing the federal government’s growing involvement and responsibility for safe navigation. The station is also eligible under Criterion Consideration G as a property of exceptional importance that has achieved significance within the past fifty years. The transmission tower and all buildings associated with the operation of LORAN-C are considered contributing elements to the district.

Historian: Terri Asendorf, Architectural Historian, MSHP
Jacobs Engineering Group Inc. (Jacobs)

Project Information: The USCG LORAN-C station Historic District, Narrow Cape, Kodiak, Alaska recording project was performed under contract with the United State Army Corps of Engineers (USACE) for USCG under the direction of the Alaska State Historic Preservation Officer and the Advisory Council on Historic Preservation. The historical reports and photographs were prepared by Jacobs. Terri Asendorf served as architectural historian, and Casey Martin served as architect.
I. Historical Information

I.a. Physical History

I.a.i. Date of Erection
1976

I.a.ii. Architect
USCG

I.a.iii. Original and Subsequent Owners, Occupants, Uses
USCG

I.a.iv. Builder, Contractor, Suppliers
625’ guyed antenna - Stainless, Inc., Model 1300

I.a.v. Original Plans and Construction
These are discussed individually below and on the attached architectural building inventory forms. Site plans and architectural drawings of the facilities are also provided.

I.a.vi. Alterations and Additions
These are discussed individually below and on the attached architectural building inventory forms. Site plans and architectural drawings of the facilities are also provided.

I.b. Historical Context

I.b.i. LORAN-A to C
Historically, maritime and aviation positioning was done using dead reckoning, celestial navigation, and later, radio beacon. With the approach of WWII, the development of a more accurate system was needed for defense operations, and in 1940 the Army Signal Corps issued a requirement for “Precision Navigational Equipment for Guiding Airplanes.” The pulsed, hyperbolic, long-range radio navigation system that eventually became known as LORAN was proposed by physicist Alfred L. Loomis, who was working under the direction of the National Defense Research Committee (NDRC). In 1941, his proposal was accepted and trial stations were established at inactive USCG lifeboat stations at Montauk Point in Long Island, New York, and Fenwick Island, Delaware. Corporations such as RCA, Sperry, Bell Laboratories, Westinghouse, and General Electric filled equipment orders for the model stations (Pierce, McKenzie, and Woodward 1948).

LORAN was further developed by scientists at the Radiation Laboratory of the Massachusetts Institute of Technology. Generally derived from the British GEE (generalized estimating equation) system, the first iteration of LORAN operated at the 1,850 and 1,950 kilohertz (kHz) frequencies. Later called “LORAN-A,” its use by naval and air convoys in defense missions quickly increased due to requirements by the Allied forces for a means of a tactical bombing system (Joint Aids to Navigation Panel 1957). Under the Lend-Lease program established in
1941, the United States used LORAN-A to guide planes and bombers to the former Soviet Union during the war (Thomas 2011).

Between 1942 and 1944, LORAN-A use rapidly increased, and by 1945, there were stations built all over the world providing some sixty million square miles of coverage (Pierce, McKenzie, and Woodward 1948). The stations were grouped into regional chains consisting of one “master” transmitting station and two or more “secondary” transmitting stations, each separated by several hundred miles. Station location and orientation were determined by coverage requirements. By 1944, approximately 75,000 receivers were distributed to military and civilian users with seventy-five U.S. and fifteen British and Canadian LORAN transmitters that provided coverage over 30 percent of the earth’s surface (Pierce, McKenzie, and Woodward 1948), including high-traffic water and air routes.

Originally a U.S. Army-driven effort, the LORAN-A program was later transferred to the U.S. Navy because of its mission to precisely and safely route convoys and guide and deliver defense material – tasks that could be achieved using LORAN. In November 1941, the U.S. Treasury Department transferred the USCG to the U.S. Navy to support war efforts. Given its official role as operator and administrator of U.S. Aids to Navigation, the USCG assumed management of the LORAN program for the Navy. After the war, in 1946, the USCG was transferred back to the Treasury Department, but retained management of the LORAN program (Thomas 2011). Incidentally, USCG was transferred to the Department of Transportation in 1967, and then again to the Department of Homeland Security in 2002.

In 1947, the International Telecommunications Union Conference (ITU) allocated the frequency band 90–110 kHz for the development of a farther-reaching, long distance, radio navigation system on a worldwide basis (Dickinson 1959). This was partly in response to a need for less signal interference: the higher ranges were allocated solely for military use during wartime, but when they were returned to civilian use after the war, signal interference increased. Over the next decade, various military branches were attempting to improve LORAN including the U.S. Air Force (USAF), which developed the Cycle Matching Tactical Bombing and Navigation System (CYTAC). CYTAC was an experimental electronic strategic bombing system that used the same hyperbolic principles as LORAN-A, but at the lower frequencies allocated by the ITU. Since the tactical bombing application of CYTAC was classified, its use for civilian navigation was limited. Therefore, USAF declassified the civilian application of CYTAC and named it “LORAN-C;” the tactical bombing application remained confidential (Joint Aids to Navigation Panel 1957). The first LORAN-C navigation system was installed on the U.S. East Coast in 1957 at stations in Carolina Beach, North Carolina, Martha’s Vineyard, Massachusetts, and Jupiter Inlet, Florida.

In 1974, LORAN-C was authorized by the Secretary of Transportation to be the federally provided radio navigation system for the U.S. Coastal Confluence Zone (CCZ), which is defined as the area seaward of a harbor entrance to fifty nautical miles offshore, or the edge of the Continental Shelf, whichever is greater. This
mandate drove the expansion of LORAN-C service to all coasts of the United States – including Alaskan waters and the Gulf of Mexico – and to the Great Lakes by 1980. LORAN-C also aided early environmental initiatives. In the 1970s, the system was used to guide oil tankers along the Pacific Coast from Alaska to Canada and the contiguous United States to assure high-precision navigation and minimize potential collision-related damage from growing tanker traffic.

I.b.ii. LORSTA Kodiak

LORAN station (LORSTA) Narrow Cape was constructed in 1976 to replace the LORAN-A signal from Sitkinak, which transmitted from 1960 to 1976. For thirty-three years, LORAN-C Narrow Cape transmitted a one-megawatt signal with a coverage area of 2,400 square nautical miles, providing navigational service to mariners and aviators in an extremely harsh environment.

In 1990, Narrow Cape was renamed Kodiak. It served as a double secondary station with St. Paul (master), Port Clarence, and Attu in the North Pacific Chain; and with Tok (master), Shoal Cove, and Port Clarence in the Gulf of Alaska Chain. The station was decommissioned in 2010 and the tower is slated for demolition in spring 2012.

Life on the Island

Kodiak Island is in the Gulf of Alaska, approximately 250 miles southwest of Anchorage. The island comprises approximately 3,588 square miles. Travel to Kodiak from mainland Alaska is available by a one-hour flight from Anchorage, a nine-and-a-half to thirteen-and-a-half hour ferry ride (depending on the route) that departs frequently from Homer, or a less-available twenty-two-and-a-half hour ferry ride from Whittier (Alaska Department of Transportation 2011).

In 1972, Air Station Kodiak was established after the U.S. Navy turned over the Naval Station Kodiak to the USCG. At the time, USCG Air Station Kodiak was already operating with three HC-130H airplanes and two HH-52A helicopters. Presently, Kodiak Island is home to thirteen USCG units, including the LORAN-C station. Despite its remote location, the base is the largest USCG base in the country, serving approximately 1,000 active duty members, 1,700 family members, and several hundred civilians (KICVB [Kodiak Island Convention and Visitors Bureau] n.d.). The population of the island, including USCG Air Station Kodiak and surrounding villages, is approximately 13,900.

Unlike most other Alaska LORAN stations, the crew at LORSTA Narrow Cape lived at USCG Air Station Kodiak, not at the station. USCG Air Station Kodiak contains an exchange, commissary, post office, pizza restaurant, convenience store, cinema, bowling alley, auto hobby shop, and morale boats and campers. A gym with a large indoor pool, large modern weight and cardio rooms, and other facilities are also provided. All of the crewmembers working at the LORAN-C station would commute one-and-a-half hours from USCG Air Station Kodiak to Narrow Cape and back each day. One crewmember would be required to stand watch overnight at Narrow Cape. A bunk room was provided at the station. The
USCG Air Station Kodiak was also responsible for delivering supplies every two weeks to Attu, Port Clarence, and St. Paul.

i.b.iii. State of LORAN

In 1993, as a response to the advent of Global Navigation Satellite Systems (GNSS), the Department of Defense advised that there was no longer a requirement for LORAN. As a result, USCG attempted to close U.S. LORAN stations and returned operation of all international stations to the host countries. The Russian-American Chain that included Attu remained in operation as a gesture made by both countries to promote peace after the Cold War. Moreover, Congress did not allow for closure of U.S. stations based on the protests of civilian users, and the program continued in operation for another fourteen years (Thomas 2011).

In October 2009, in an overall effort to eliminate unnecessary federal programs, the U.S. Department of Homeland Security signed into law an act terminating the LORAN-C system. USCG began a phased decommissioning of LORAN-C stations throughout the United States in February 2010 including demolishing transmission towers, which were an obstruction to air traffic, and placing all associated buildings in layaway. LORAN-C remains in use in several countries including the United Kingdom, France, Germany, Norway, Saudi Arabia, India, Korea, Japan, China, and Russia.

The signal at Kodiak was terminated on February 8, 2010. By October 1, 2010, all U.S. LORAN systems had ceased operation.

Future of LORAN

The termination of LORAN-C in the United States and Canada has incited speculation on the need for a backup navigation system should disruptions occur with GNSS. Enhanced LORAN, or eLORAN, is the latest iteration of LORAN technology, providing navigation services completely independent of GNSS. The eLORAN system has enhanced the LORAN-C signal by providing: (1) better control and tolerance of timing and pulse shape; (2) time-of-transmission synchronization to universal coordinated time (UTC) at each transmitter site independent of any changes in signal propagation; and (3) the addition of a digital data broadcast capability called the LORAN data channel which can be used to send time-synchronization and text messages.

Several European countries, including the United Kingdom, Saudi Arabia, and South Korea, are converting former LORAN stations to eLORAN technology, while other countries including Ireland and Sweden are building new stations (Schue 2011). In North America, debate over which system should serve as backup for GNSS has prevented a transition from LORAN-C to eLORAN.
II. Architectural Information

II.a. Physical History of Buildings

II.a.i. Old Transmitter Building, 1976
This building is a 9,553-square-foot, one-story rectangular structure. It is approximately 255’ x 42’ and was constructed in 1976. It is a concrete tilt-up building with a concrete steel reinforced slab-on-grade foundation and reinforced concrete piers supporting the tilt-up concrete panels and roof structure. The roof is formed with corrugated steel panels with Firestone membrane covering. The windows are fixed with aluminum frames. There is a dry sprinkler system and fire pump, two cooling towers, a domestic hot water boiler, and a hydronic baseboard heating system (The Environmental Company, Inc. 2004).

II.a.ii. New Transmitter Building, ca. 2005
The New Transmitter Building consists of an operations room, electrical room, generator room, mechanical room, and transmitter room. This one-story building was constructed sometime between 2005 and 2008. The building comprises approximately 2,500 square feet. The exterior consists of exposed aggregate concrete wall panels. The foundation appears to be concrete slab-on-grade. The roof is flat, concrete, with metal ducting surrounding the plenum. There are no windows.

II.a.iii. 625’ Guyed Antenna, 1976
The antenna or “tower” is a 625’ tower comprised of galvanized steel structural members (legs, girts and diagonals) anchored by guy wires; it was also constructed in 1976. The tower featured a ladder, safety rail, and lighting system. It was entirely covered in orange and white aviation warning paint. The base of the tower consists of an approximately 10’ x 10’ reinforced concrete foundation that is 9’ thick. The tower rises out of a fiberglass rod insulator, which is supported by the foundation. It is connected to the Transmitter Building by the signal feed line. The Kodiak tower was the first tall tower on which tower aircraft warning lights were changed out from incandescent bulbs to new light emitting diodes (LED), which had greater longevity and saved in maintenance costs and visits.

The tower is scheduled for demolition spring 2012.
III. Site Description

The facilities at LORSTA Kodiak were minimal, as the crewmembers lived at USCG Air Station Kodiak rather than at the LORAN-C station. In addition to the tower, only one major building was needed. That building contained the transmitter, which was originally built in 1976, and was rebuilt in 2005. Both buildings are extant.
IV. Reference List

IV.a. Primary Sources

IV.a.i. Interviews
Marshall, Gary. 23 April 2011. Former USCG crewmember at LORSTA Tok, Alaska. Phone interview conducted from Austin, Texas by the author.

Ornelas, Vince. 21-31 July 2010. Electronics Technician First Class, USCG, Attu, Alaska. Interview conducted at LORSTA Attu by the author.

Rosenberg, Jeff. 21-31 July 2010. Chief Warrant Officer 2, Commanding Officer, USCG, Attu, Alaska. Interview conducted at LORSTA Attu by the author.

Schue, Charles. 12 September 2011. President and CEO, UrsaNav, Inc. 2011. Phone interview conducted from Austin, Texas by the author.

Thomas, Gary. 27 June 2011. USCG Historian. Phone interview conducted from Dallas, Texas by the author.

IV.a.ii. Other Primary Sources
American Consulate in Montreal to the Secretary of State in Washington, DC, Regarding Special NAT/PAC (LORAN A) Meeting, Montreal, November 4, 1974 [Electronic Record]; United States Department of State. National Archives [retrieved from the Access to Archival Databases at http://aad.archives.gov/aad/, April 15, 2011 (Document No. D740195-1082)]

USCG. n.d. *LORAN Station Attu Operating Manual, Change 4, Manuscript.* On file, USCG.

IV.b. Secondary Sources

INDEX TO PHOTOGRAPHS
NATIONAL REGISTER OF HISTORIC PLACES PHOTOGRAPH LOG
(COLOR TRANSPARENCIES CONTACT SHEETS)
HISTORIC AMERICAN BUILDINGS SURVEY
INDEX TO PHOTOGRAPHS

U.S. COAST GUARD LORSTA NARROW CAPE
Bayside Drive Road
Chiniak
Kodiak Island Borough
Alaska

INDEX TO COLOR TRANSPARENCIES

Phyllys Callina, photographer, under the supervision of Terri Asendorf, March 2011

Photographic documentation was conducted according to the National Register of Historic Places (NRHP) standards, per the stipulations in the Programmatic Agreement.

<table>
<thead>
<tr>
<th>Date</th>
<th>Frame</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/17/2011</td>
<td>1</td>
<td>1 Station - East Perspective</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>2</td>
<td>2 Transmitter Tower</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>3</td>
<td>3 New Transmitter Building - Southeast Elevation</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>4</td>
<td>4 New Transmitter Building - Southwest Elevation</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>5</td>
<td>5 New Transmitter Building - Southeast Perspective</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>7</td>
<td>7 New Transmitter Building - South Perspective</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>8</td>
<td>8 Operations Building - Southeast Elevation</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>9</td>
<td>9 Operations Building - Southwest Elevation</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>10</td>
<td>10 Operations Building - Partial Southeast Elevation 1</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>11</td>
<td>11 Operations Building - Partial Southeast Elevation 2</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>12</td>
<td>12 Operations Building - Partial Southeast Elevation 3</td>
</tr>
<tr>
<td>3/17/2011</td>
<td>13</td>
<td>13 Station - North Elevation</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>14</td>
<td>14 Operations Building - Common Area Restroom</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>15</td>
<td>15 Operations Building - Common Area Restroom Entrance</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>16</td>
<td>16 Operations Building - Common Area Restroom Shower</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>17</td>
<td>17 Operations Building - Common Area Restroom Toilet</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>18</td>
<td>18 Operations Building - Conference Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>19</td>
<td>19 Operations Building - Conference Room Janitorial Closet</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>20</td>
<td>20 Operations Building - Conference Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>21</td>
<td>21 Operations Building - Conference Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>22</td>
<td>22 Operations Building - Coupler Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>23</td>
<td>23 Operations Building - Former Gym</td>
</tr>
<tr>
<td>Date</td>
<td>Number</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>24</td>
<td>Operations Building - Former Transmitter Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>25</td>
<td>Operations Building - Former Transmitter Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>26</td>
<td>Operations Building - Former Transmitter Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>27</td>
<td>Operations Building - Former Transmitter Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>28</td>
<td>Operations Building - Shop Room - Generator</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>29</td>
<td>Operations Building - Shop Room - Generator</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>30</td>
<td>Operations Building - Shop Room - Generator</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>31</td>
<td>Operations Building - Shop Room - Generator</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>32</td>
<td>Operations Building - Shop Room Workspace</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>33</td>
<td>Operations Building - Kitchen</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>34</td>
<td>Operations Building - Kitchen</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>35</td>
<td>Operations Building - Living Quarters - Large Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>36</td>
<td>Operations Building - Living Quarters - Large Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>37</td>
<td>Operations Building - Living Quarters - Small Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>38</td>
<td>Operations Building - Living Quarters - Small Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>39</td>
<td>Operations Building - Hallway</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>40</td>
<td>Operations Building - Hallway</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>41</td>
<td>Operations Building - Laundry Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>42</td>
<td>Operations Building - Living Quarters Restroom</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>43</td>
<td>Operations Building - Living Quarters Restroom</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>44</td>
<td>Operations Building - Officer in Charge Office Entrance</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>45</td>
<td>Operations Building - Plenum Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>46</td>
<td>Operations Building - Plenum Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>47</td>
<td>Operations Building - Plenum Room - Cooling Towers</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>48</td>
<td>Operations Building - Shared Office</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>49</td>
<td>Operations Building - Supply Office/Former Transmitter Room Doorway</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>50</td>
<td>Operations Building - XPO Office</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>51</td>
<td>Transmitter Building - Electrical Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>52</td>
<td>Transmitter Building - Electrical Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>53</td>
<td>Transmitter Building - Generator Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>54</td>
<td>Transmitter Building - Generator Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>55</td>
<td>Transmitter Building - Inactive Transmission Equipment</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>56</td>
<td>Transmitter Building - Mechanical Room - Glycol System</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>57</td>
<td>Transmitter Building - Inactive Transmission Equipment</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>58</td>
<td>Transmitter Building - Transmitter Room</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>59</td>
<td>Transmitter Building - Inactive Transmission Equipment</td>
</tr>
<tr>
<td>5/26/2010</td>
<td>60</td>
<td>Transmitter Building - Inactive Transmission Equipment</td>
</tr>
</tbody>
</table>
Alaska Building Inventory Form

Historic Name: Old Transmitter Building
Other Name: N/A

Building Address:

Current Owner's Name and Address:

United States Coast Guard, Civil Engineering Unit, PO Box 21747, Juneau, AK, 99802-1747

USGS Quad Name and Map Sheet:
Kodiak, D-2
Section: 4
Township: 32 S
Range: 19 W

GPS Coordinate (NAD-27 Alaska):
57° 25' 55", -152° 20' 30"

UTM:

- **Zone:** 5V
- **Easting:** 539518.04
- **Northing:** 6365681.35

Historic Associations

Historic Function and Sub-function:
1. Defense
2. Coast Guard Facility
3.
4.

Current Function and Sub-function:
1. Defense
2. Coast Guard Facility
3.
4.

Significant Person(s):
1. N/A
2.

Architect, Builder, Contractor, Designer:
USCG

Original Owner:
USCG

Architectural Information:

Date of Construction: 1976
Date Moved: N/A
** Destruction Date:** N/A
Reconstruction Date: N/A

Alteration Dates:
1.
2.
3.
4.

Resource Type

- [] Building
- [] Site
- [x] Structure
- [] Object

Stories:
1. one
2.

Architectural Style:

Number of Ancillary Structures:
N/A

Foundation Materials:
1. Concrete
2.

Roof Materials:
1. Concrete Panels
2.

Exterior Wall Materials:
1. Concrete
2.

Other Materials:
1. Fixed aluminum windows
2.

USCG LORAN-C Station

Associated District:
Narrow Cape (Kodiak)
Architectural Description (Include setting & outbuildings):
The Old Transmitter Building is a 9,553-square-foot, one-story rectangular structure, approximately 255' × 42', constructed in 1976. It is a concrete tilt-up building with a concrete steel reinforced slab-on-grade foundation and reinforced concrete piers supporting the tilt-up concrete panels and roof structure. The roof is formed with corrugated steel panels with Firestone membrane covering. Windows are fixed with aluminum frames. A dry sprinkler system and fire pump, two cooling towers, a domestic hot water boiler, and a hydronic baseboard heating system are also present.

Statement of Significance:
The LORAN-C Station at Kodiak is eligible as a historic district under Criterion A, at the national level of significance, for its role as a historic aid to navigation within the Gulf of Alaska. Long-Range Aid to Navigation (LORAN) was the federally-provided radio navigation system for maritime and some aviation activity from approximately 1940 to 2010. The station is also eligible under Criterion Consideration G as a property of exceptional importance that has achieved significance within the past 50 years.

At the beginning of WWII, positioning was done using dead reckoning, celestial navigation, and later, radio beacon. As state and federal responsibility for providing navigational aids increased, the development of a more accurate system was needed. The LORAN system was developed under a program of the federal government by scientists at MIT, and modeled after the British Gee system.

LORAN-C provided a highly accurate, all-weather navigational system, available 24-hours-per-day. It operated as a low-frequency hyperbolic radio navigation system using the time difference in pulses from two pairs of transmitting stations to obtain a navigation fix. Operation and maintenance of LORAN stations was transferred to the U.S. Coast Guard in 1943. Stations were built throughout the U.S., Russia, Canada, Asia, and Europe eventually to provide some 70 million square miles of coverage.

The Kodiak LORAN-C Station was constructed in 1976 by the USCG and decommissioned in 2010. It served as a double secondary station with St. Paul (master), Port Clarence, and Attu in the North Pacific Chain; and Tok (master) and Shoal Cove in the Gulf of Alaska Chain. The station consisted of an Old and a New Transmitter Buildings and a 625-foot guyed tower. The New Transmitter Building is a contributing feature to the Kodiak LORAN-C Station Historic District.

Eligibility:
[x] Yes [] No
If yes: [x] A [] B [] C [] D [] E [] F [x] G

Criteria Considerations:
Prepared by: Terri Asendorf
Reviewed by Professional that meets the following Professional Qualifications:

Prepared as Architect
Reviewed by Architectural Historian

SHPO Response:
[] Eligible (Concur) [] Eligible (Do Not Concur)
[] Not Eligible (Concur) [] Not Eligible (Do Not Concur)

Minor Recommendations and Comments Include:
[] Need more information related to:

Authorized Signature:

Signed: Date:
Alaska Building Inventory Form

Historic Name: New Transmitter Building
Other Name: N/A

Building Address:
City: Kodiak, AK

Current Owner’s Name and Address:
United States Coast Guard, Civil Engineering Unit, PO Box 21747, Juneau, AK, 99802-1747

USGS Quad Name and Map Sheet: Kodiak, D-2
Section: 4
Township: 32 S
Range: 19 W

GPS Coordinate (NAD-27 Alaska): 57° 25' 55", -152° 20' 30"
UTM:
Zone: S
Easting: 539518.04
Northing: 6365681.35

Historic Associations

Historic Function and Sub-function: 1. Defense 2. Coast Guard Facility 3. 4.

Current Function and Sub-function: 1. Defense 2. Coast Guard Facility 3. 4.

Significant Person(s):
1. N/A
2.
Significant Dates:
1. ca. 2005
2.
Architect, Builder, Contractor, Designer: USCG
Original Owner: USCG

Architectural Information

Date of Construction: ca. 2005
Date Moved: N/A
DeSTRUCTION Date: N/A
Reconstruction Date: N/A
Alteration Dates: 1. 2. 3. 4.

Resource Type
[] Building
[] Site
[] Structure
[] Object
Stories
1. one
2.
Architectural Style: N/A
Building Type:

Number of Ancillary Structures: N/A

Foundation Materials:
1. Concrete
2.
Roof Materials:
1. Concrete Panels
2.
Exterior Wall Materials:
1. Concrete
2.
Other Materials:
1. Fixed aluminum windows
2.
Cultural Affiliation: US Government

LORSTA Narrow Cape
Alaska Building Inventory Forms
3 of 6
The New Transmitter Building consists of an operations room, electrical room, generator room, mechanical room, and transmitter room. This one-story building was constructed some time between 2005 and 2008. The building is approximately 2,500 square feet. The exterior consists of exposed aggregate concrete wall panels. The foundation appears to be concrete slab-on-grade. The roof is flat concrete with metal ducting surrounding around the plenum. There are no windows.

The LORAN-C Station at Kodiak is eligible as a historic district under Criterion A, at the national level of significance, for its role as a historic aid to navigation within the Gulf of Alaska. Long-Range Aid to Navigation (LORAN) was the federally-provided radio navigation system for maritime and some aviation activity from approximately 1940 to 2010. The station is also eligible under Criterion Consideration G as a property of exceptional importance that has achieved significance within the past 50 years.

At the beginning of WWII, positioning was done using dead reckoning, celestial navigation, and later, radio beacon. As state and federal responsibility for providing navigational aids increased, the development of a more accurate system was needed. The LORAN system was developed under a program of the federal government by scientists at MIT, and modeled after the British Gee system. LORAN-C provided a highly accurate, all-weather navigational system, available 24-hours-per-day. It operated as a low-frequency hyperbolic radio navigation system using the time difference in pulses from two pairs of transmitting stations to obtain a navigation fix. Operation and maintenance of LORAN stations was transferred to the U.S. Coast Guard in 1943. Stations were built throughout the U.S., Russia, Canada, Asia, and Europe eventually to provide some 70 million square miles of coverage.

The Kodiak LORAN-C Station was constructed in 1976 by the USCG and decommissioned in 2010. It served as a double secondary station with St. Paul (master), Port Clarence, and Attu in the North Pacific Chain; and Tok (master) and Shoal Cove in the Gulf of Alaska Chain. The station consisted of an Old and a New Transmitter Buildings and a 625-foot guyed tower. The New Transmitter Building is a contributing feature to the Kodiak LORAN-C Station Historic District.

Minor Recommendations and Comments Include:

- Need more information related to: Historic Context, Integrity, Architectural Description, Period of Significance

Authorized Signature: Date:
Alaska Building Inventory Form

Historic Name: LORAN-C Transmission Tower
Current Owner’s Name and Address: United States Coast Guard, Civil Engineering Unit, PO Box 21747, Juneau, AK, 99802-1747

<table>
<thead>
<tr>
<th>Historic Name:</th>
<th>LORAN-C Transmission Tower</th>
<th>Other Name:</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Address:</td>
<td></td>
<td>City:</td>
<td>Kodiak, AK</td>
</tr>
<tr>
<td>Current Owner’s Name and Address:</td>
<td>United States Coast Guard, Civil Engineering Unit, PO Box 21747, Juneau, AK, 99802-1747</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USGS Quad Name and Map Sheet:</td>
<td>Kodiak, D-2</td>
<td>Section:</td>
<td>4</td>
</tr>
<tr>
<td>GPS Coordinate (NAD-27 Alaska):</td>
<td>57° 25' 55", -152° 20' 30"</td>
<td>UTM:</td>
<td>ZONE E YEAR 539518.04 6365681.35</td>
</tr>
<tr>
<td>Historic Associations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Function and Sub-function:</td>
<td>1. Defense 2. Coast Guard Facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Function and Sub-function:</td>
<td>1. Defense 2. Coast Guard Facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architect, Builder, Contractor, Designer:</td>
<td>USCG Original Owner: USCG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Information:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Construction:</td>
<td>1976</td>
<td>Date Moved:</td>
<td>N/A</td>
</tr>
<tr>
<td>Alteration Dates</td>
<td>1. 2. 3. 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Type</td>
<td>[] Building [] Site [x] Structure [] Object</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Style:</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Ancillary Structures:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Materials:</td>
<td>1. Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Materials:</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall Materials:</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Materials:</td>
<td>1. Steel 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural Affiliation:</td>
<td>US Government</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The 625-foot tower with a base anchor and guy wires was built in 1976. The tower is slated for demolition in the summer of 2011.

At the beginning of WWII, positioning was done using dead reckoning, celestial navigation, and later, radio beacon. As state and federal responsibility for providing navigational aids increased, the development of a more accurate system was needed. The LORAN system was developed under a program of the federal government by scientists at MIT, and modeled after the British Gee system. LORAN-C provided a highly accurate, all-weather navigational system, available 24-hours-per-day. It operated as a low-frequency hyperbolic radio navigation system using the time difference in pulses from two pairs of transmitting stations to obtain a navigation fix. Operation and maintenance of LORAN stations was transferred to the U.S. Coast Guard in 1943. Stations were built throughout the U.S., Russia, Canada, Asia, and Europe eventually to provide some 70 million square miles of coverage.

The Kodiak LORAN-C Station was constructed in 1976 by the USCG and decommissioned in 2010. It served as a double secondary station with St. Paul (master), Port Clarence, and Attu in the North Pacific Chain; and Tok (master) and Shool Cove in the Gulf of Alaska Chain. The station consisted of an Old and a New Transmitter Buildings and a 625-foot guyed tower. The New Transmitter Building is a contributing feature to the Kodiak LORAN-C Station Historic District.
ARCHITECTURAL DRAWINGS
HABS RELEASE FORM
COPYRIGHT RELEASE FORM

The form must be used as written below. Send the completed form with the final historical report.

RELEASE AND ASSIGNMENT

I, __________________, am the owner, or am authorized to act on behalf of the owner, of the materials described below including but not limited to copyright therein, that the National Park Service has requested to use, reproduce and make available as public domain materials at the Library of Congress as part of the Historic American Buildings Survey/Historic American Engineering Record collections. (If not the sole copyright owner, please specify in the space below any additional permissions needed, if any, to grant these rights.) I hereby transfer and assign to the National Park Service any and all rights including but not limited to copyrights in the materials specified below.

Survey Number: HABS No. __________, HAER No. __________ or HALS No. __________

Types of Materials (please check all that apply):
Photographs _____ Illustrations _____ Textual materials _____
Oral History/Interviews _____ Audiotape _____ Videotape _____
Other (describe) ______________

Detailed Description of Materials (attach additional pages if necessary):
__
__
__

Additional Permissions Needed, if any (for example, copyright owner, subjects in photographs, illustrations in text):
__

Disposition of Materials After Use (please check one): _____ Return to owner
__
_____ May be retained

__
Name (please print) Signature Date

__
Address Telephone Number